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Abstract We consider shock measures in a class of conserving stochastic particle systems
on Z. These shock measures have a product structure with a step-like density profile and
include a second class particle at the shock position. We show for the asymmetric simple
exclusion process, for the exponential bricklayers’ process, and for a generalized zero range
process, that under certain conditions these shocks, and therefore the second class particles,
perform a simple random walk. Some previous results, including random walks of product
shock measures and stationary shock measures seen from a second class particle, are direct
consequences of our more general theorem. Multiple shocks can also be handled easily in
this framework. Similar shock structure is also found in a nonconserving model, the branch-
ing coalescing random walk, where the role of the second class particle is played by the
rightmost (or leftmost) particle.

M. Balázs was partially supported by the Hungarian Scientific Research Fund (OTKA) grants K-60708,
F-67729, by the Bolyai Scholarship of the Hungarian Academy of Sciences, and by Morgan Stanley
Mathematical Modeling Center.

A. Rákos acknowledges financial support of the Hungarian Scientific Research Fund (OTKA) grants
PD-72604, PD-78433 and from the Bolyai Scholarship of the Hungarian Academy of Sciences.

M. Balázs (�)
Department of Stochastics, Institute of Mathematics, Budapest University of Technology
and Economics, 1. Egry József u. H ép. V. 7., 1111 Budapest, Hungary
e-mail: balazs@math.bme.hu

G. Farkas · P. Kovács
Budapest University of Technology and Economics, Budapest, Hungary

G. Farkas
e-mail: fgyorgy@math.bme.hu

P. Kovács
e-mail: kpeter@math.bme.hu

A. Rákos
Research Group for Condensed Matter Physics, Hungarian Academy of Sciences, Budapest University
of Technology and Economics, Budafoki u. 8, 1111 Budapest, Hungary
e-mail: rakos@phy.bme.hu

mailto:balazs@math.bme.hu
mailto:fgyorgy@math.bme.hu
mailto:kpeter@math.bme.hu
mailto:rakos@phy.bme.hu


Random Walk of Second Class Particles in Product Shock Measures 253

Keywords Interacting particle systems · Second class particle · Shock measure · Exact
solution · Asymmetric simple exclusion · Zero range process · Bricklayers process ·
Branching coalescing random walks

1 Introduction

On a macroscopic level driven diffusive systems are often described by a set of conserva-
tion laws for the densities. These hydrodynamical equations are in general nonlinear PDEs,
which can develop singularities in the solution. Shocks are discontinuities in these weak
solutions, which travel with a speed also known as the Rankine-Hugoniot velocity. Whereas
the large scale continuous description of shocks is well established [19], much less is known
about the microscopic structure and dynamics, which has become a subject of intense inves-
tigation in recent years [3, 4, 8, 12–18, 24, 26, 27].

In order to make the first steps in this direction one has to define the position of shocks
on the lattice scale, which is already a nontrivial task in general. It is well known that second
class particles, which move stochastically and follow the trajectories of density fluctuations,
are attracted by shocks and therefore serve as good markers for the shock position. Derrida
et al. in [12] derive the time invariant shock measure in the asymmetric simple exclusion
process (ASEP) as seen from such a second class particle. They observe that when a certain
condition holds for the asymmetry and the limiting densities, the invariant measure becomes
a Bernoulli product measure with a simple step-like density profile. Similar product shock
structure, as seen from a second class particle, was found later in another stochastic lattice
model, the exponential bricklayers’ process (BLP) [3].

A different approach, initiated by Belitsky and Schütz, attempted to capture not only
the structure but also the microscopic dynamics of shocks. In [8] they show that under the
same condition as in [12] there is a family of product measures μk, k ∈ Z with a step-like
density which evolve into linear combinations of similar measures, and the interpretation is
that the shock position k performs a simple random walk. The random walking shocks were
shown to exist later in the exponential BLP [4] too. The advantage of this description is that it
doesn’t use second class particles therefore it can be applied also in cases where second class
particles cannot be defined (or the number of them is not conserved). An example of such
case is the branching coalescing random walk. Although this is a non-conserving system,
there are shocks with similar structure and evolution here as well [18]. It is interesting that
random walking shocks have also been found in systems with more than one conserved
quantities [24].

These two types of results naturally raise the question whether the second class particle
itself, attracted by the shock, performs a simple random walk. In this paper we give an an-
swer to this question by considering shock measures with second class particles at the shock
position. The idea of considering such shock measures appeared in the context of the ASEP
with open boundaries in [18], where a conjecture is formulated saying that the above random
walk property should hold for the shock measures with second class particles too. In a fairly
general framework we show the random walk property for these measures in the ASEP, in
the exponential BLP and in a generalized zero range process (GZRP) (where negative par-
ticle numbers can also occur). While our result clearly shows the simple random walk of
second class particles, the results of [3, 4, 8, 12] for product shock measures also follow.
Notice that the existing stationary product distribution results did not include any random
walk dynamics, and the random walk results did not include the second class particle. Hence
our result is genuinely new, and also connects the two types of arguments.
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The diffusion coefficient of a general shock in ASEP was computed and the diffusive
behavior was investigated by Ferrari and Fontes [13]. They used the second class particle
as a characterizing object for the shock location, and their result on how the shock location
depends on the initial configuration of ASEP made it possible to generalize the diffusive
scale-results to the case of multiple shocks with second class particles in Ferrari, Fontes and
Vares [14].

Multiple shocks, i.e., several steps in the density profile have also been studied in [8]
and [4]. In this case the exact microscopic description is given, and involves several shock
positions, which perform an interacting simple random walk. Due to the attraction of these
“micro-shocks” they form a bound state with a finite width and can be considered as a single
shock with a more complex structure. It is interesting that while the result for multiple shocks
is a direct generalization of that for a single shock in the BLP [4], in the ASEP such a naive
generalization does not hold. In order to be able to handle multiple shocks in the ASEP, extra
particles or vacancies had to be introduced at the shock position [8]. Our description with
the second class particles at the shock positions explains the interaction between shocks in
a very natural way, without the need of artificial particles. In fact we show that previously
known forms of random walking shocks can be obtained as an appropriate mixture of the
two marginals of our coupling shock measure.

It is important to note that the existence of random walking shocks is closely related to the
exact solvability of these particle systems in an open geometry. The matrix product ansatz is
a method widely used for finding stationary states of stochastic lattice models [9]. Recently
it has been shown [15, 17] that the occurrence of a single random walking shock implies
the existence of a two-dimensional representation of the quadratic algebra appearing in the
matrix product ansatz. Similarly, multiple shocks correspond to other finite dimensional
representations [15–17]. Moreover, as a very recent progress, utilizing the single-particle
properties of random walking shocks, the Bethe ansatz has been successfully applied [27]
in the open-boundary ASEP for the evaluation of the spectrum and also for the current large
deviation function.

The paper is organized as follows. In Sect. 2 we introduce a wide family of stochastic
particle systems on Z with nearest neighbour jumps, and summarize their basic properties,
such as stationary product measures and hydrodynamic limit. A few specific examples are
considered in more detail. A surface growth interpretation can also be given to these models
which is sometimes more natural. In Sect. 3 we formulate our main results for random
walking single and multiple shocks, proofs are given in Sect. 4. A different model, the
branching coalescing random walk is investigated in Sect. 5. This model is not in the family
considered before. We prove a statement here which is similar in spirit to that of Sect. 3. The
second class particle is replaced here by the rightmost (or leftmost) particle.

2 A Family of Models

The class of stochastic interacting systems we consider here appeared several times in the
literature, we repeat a description recently formulated in [7]. The class is a generalization of
the so-called misanthrope process. We use a surface growth interpretation, but many mem-
bers of this class can be understood in terms of particles jumping on the one dimensional
lattice. For −∞ ≤ ωmin ≤ 0 and 1 ≤ ωmax ≤ ∞ (possibly infinite valued) integers, we define
the single-site state space

I := {
z ∈ Z : ωmin − 1 < z < ωmax + 1

}
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Fig. 1 Shown is the relation
between the surface (above) and
the particle (below)
interpretation. The empty circle
denotes an antiparticle

and the configuration space

� = {
ω = (ωi)i∈Z : ωi ∈ I

} = IZ.

For each pair of neighboring sites i and i + 1 of Z, we consider a column built of bricks
above the edge (i, i + 1). The height of this column is denoted by hi . A state configuration
ω ∈ � has components ωi = hi−1 − hi ∈ I , being the negative discrete gradients of the
height of the “wall”. For ω ∈ � and i �= j let ωi,j be the configuration with components

ω
i,j

k =

⎧
⎪⎪⎨

⎪⎪⎩

ωk, for k �= i, j,

ωk − 1, for k = i,

ωk + 1, for k = j.

(1)

Also, define, for a vector h of heights, hi↑ and hi↓ by

h
i↑
k =

{
hk, for k �= i,

hk + 1, for k = i,
h

i↓
k =

{
hk, for k �= i,

hk − 1, for k = i.

The continuous time evolution is described by jump processes. A brick can be added:

ω → ωi,i+1

h → hi↑

}

with rate p(ωi, ωi+1),

or removed:

ω → ωi+1,i

h → hi↓

}

with rate q(ωi, ωi+1).

Conditionally on ω(t), these moves are independent. See Fig. 1 for visualization. We impose
the following assumptions on the rates:
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– The rates must satisfy

p(ωmin, · ) ≡ p( · , ωmax) ≡ q(ωmax, · ) ≡ q( · , ωmin) ≡ 0

whenever either ωmin or ωmax is finite. Furthermore, we assume that either p and q are
non-zero in all other cases, or one of them is the identically zero function (totally asym-
metric case).

– In order to provide a smoothening effect in the dynamics we assume monotonicity in the
following way:

p(z + 1, y) ≥ p(z, y), p(y, z + 1) ≤ p(y, z)
(2)

q(z + 1, y) ≤ q(z, y), q(y, z + 1) ≥ q(y, z)

for y, z, z+ 1 ∈ I . This property has the natural interpretation that the higher neighbors a
column has, the faster it grows and the slower it gets a brick removed. Our model is hence
attractive.

– We are going to use the product property of the model’s translation-invariant stationary
measure. For this reason, similarly to Cocozza-Thivent [11], we need two assumptions:
– For any x, y, z ∈ I

p(x, y) + p(y, z) + p(z, x) + q(x, y) + q(y, z) + q(z, x)

= p(x, z) + p(z, y) + p(y, x) + q(x, z) + q(z, y) + q(y, x). (3)

– There are symmetric functions sp and sq , and a common function f , such that
f (ωmin) = 0 whenever ωmin is finite, and for any y, z ∈ I

p(y, z) = sp(y, z + 1) · f (y) and q(y, z) = sq(y + 1, z) · f (z). (4)

Condition (2) implies that f is non-decreasing on I .
– In order to properly construct the dynamics, restrictive growth conditions might be neces-

sary on the rates p and q in case of an unbounded single-site state space I . We comment
on this below.

At time t , the interface mentioned above is described by ω(t). Let ϕ : � → R be a finite
cylinder function, i.e., ϕ depends on a finite number of ωi values. The growth of this inter-
face is a Markov process, with the formal infinitesimal generator L:

(Lϕ)(ω) =
∑

i∈Z

p(ωi, ωi+1) · [ϕ(ωi,i+1) − ϕ(ω)
]

+
∑

i∈Z

q(ωi, ωi+1) · [ϕ(ωi+1,i ) − ϕ(ω)
]
. (5)

The construction of dynamics is available in the following situations. Several models with
bounded rates are well understood and can be handled via the Hille-Yosida Theorem, see
Liggett [22]. When the rates p and q grow at most linearly fast as functions of the local ω

values, then methods initiated by Liggett and Andjel lead to the construction of some zero
range type systems (Andjel [1], Liggett [21], Booth and Quant [10, 23]). The totally asym-
metric zero range and bricklayers’ processes with at most exponentially growing rates are
constructed in Balázs, Rassoul-Agha, Seppäläinen and Sethuraman [5]. See the definition of
zero range and bricklayers’ processes below.
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We assume that the existence of dynamics can be established on a set of tempered con-
figurations �̃ (i.e. configurations obeying some restrictive growth conditions), and we have
the usual properties of the semigroup and the generator acting on nice functions on this set.
We also assume that �̃ is of full measure w.r.t. the stationary measures defined in Sect. 2.2.
Questions of existence of dynamics are not considered in the present paper.

2.1 Examples

Many well-known nearest neighbor processes belong to this class, see e.g. [7] for a more
complete treatment. Here we only list those which we consider later in more detail.

– The asymmetric simple exclusion process (ASEP) introduced by F. Spitzer [28] is char-
acterised by ωmin = 0, ωmax = 1, f (z) = 1{z = 1},

sp(y, z) = p · 1{y = z = 1} and sq(y, z) = q · 1{y = z = 1},
where p > q are non-negative reals adding up to 1 (see (4)). In this case

p(y, z) = p · 1{y = 1, z = 0} and q(y, z) = q · 1{y = 0, z = 1}.
Here ωi ∈ {0, 1} is the occupation number for site i, p(ωi, ωi+1) is the rate for a particle
to jump from site i to i + 1, and q(ωi, ωi+1) is the rate for a particle to jump from site
i + 1 to i. These rates have values p and q , respectively, whenever there is a particle
to perform the above jumps, and there is no particle on the terminal site of the jumps.
Conditions (2) and (3) are also satisfied by these rates.

– Totally asymmetric zero range processes are included by an arbitrary nondecreasing
function f : Z → R

+,

sp(y, z) ≡ 1 and sq(y, z) ≡ 0,

p(y, z) = f (y) and q(y, z) ≡ 0.

In its original form, the totally asymmetric zero range process is a particle system with ωi

particles at site i, a particle jumps from i to i + 1 with rate f (ωi). The setting ωmin = 0,
ωmax = ∞, and so f (0) = 0 would correspond to this situation. In the sequel it will be
important for us to allow for negative values of ω as well, which comes naturally in the
surface representation. We shall refer to this class of models with ωmin = −∞, ωmax = ∞,
and f (y) > 0 for all y ∈ Z, as generalized zero range processes. Conditions (2) and (3)
trivially hold for the rates.
– As a special case, the generalized totally asymmetric exponential zero range

process (we will simply refer to it as GZRP) is obtained by p(y, z) = f (y) = eβ(y−1/2)

with a β > 0 parameter. Omitting the constant −β/2 would simply correspond to a
change of timescale but would bring in some unwanted factors in our final result.

– Totally asymmetric bricklayers models. Let ωmin = −∞, ωmax = ∞, f : Z → R
+ non-

decreasing, also having the property

f (z) · f (1 − z) = 1 for all z ∈ Z.

The values of f for positive z’s thus determine the values for non-positive z’s. Set

sp(y, z) = 1 + 1

f (y)f (z)
, sq(y, z) ≡ 0,
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which results in

p(y, z) = f (y) + f (−z), q(y, z) ≡ 0.

This process was first represented by bricklayers standing at each site i, laying a brick on
the column on their left with rate f (−ωi) and laying a brick to their right with rate f (ωi),
hence the name. Conditions (2) and (3) hold for the rates.
– As a special case, the totally asymmetric exponential bricklayers process (we will

just abbreviate as BLP) is obtained by f (z) = eβ(z−1/2) with a β > 0 parameter.
Note that the BLP is a symmetrized version of the GZRP in the following sense. For a
GZRP with a given β one can consider its counterpart by a space reflection in the surface
representation. The symmetric combination of these two processes (which is obtained
by taking the sum of the two generators) gives the corresponding BLP (in the particle
representation a particle-antiparticle transformation should follow the space reflection).

2.2 Translation Invariant Stationary Product Distributions

We now present some translation invariant stationary distributions for these processes. For
many cases it has been proved that these are the only extremal translation-invariant sta-
tionary distributions. Following some ideas in Cocozza-Thivent [11], we first consider the
non-decreasing function f of (4). For I � z > 0 we define

f (z)! :=
z∏

y=1

f (y),

while for I � z < 0 let

f (z)! := 1
∏0

y=z+1 f (y)
,

finally f (0)! := 1. Then we have

f (z)! · f (z + 1) = f (z + 1)!
for all z ∈ I . Let

θ̄ :=
{

limz→∞ log(f (z)), if ωmax = ∞
∞, else

and

θ :=
{

limz→∞ log(f (−z)), if ωmin = −∞
−∞, else.

By monotonicity of f , we have θ̄ ≥ θ . We assume θ̄ > θ . With a generic real parameter
θ ∈ (θ, θ̄), which is often referred to as the chemical potential, we define the partition sum
as

Z(θ) :=
∑

z∈I

eθz

f (z)! < ∞.

Let the product-distribution μθ have marginals

μθ(z) = μθ {ω : ωi = z} :=
{

1
Z(θ)

· eθz

f (z)! if z ∈ I,

0 if z /∈ I.
(6)
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Then the product distribution μθ is stationary for the process generated by (5).
We define the function

ρ(θ) := d

dθ
log(Z(θ)) =

∑

z∈I

z · μθ(z), θ < θ < θ̄. (7)

This is the density of particles, and it is quite easy to see that this is a strictly increasing
function. Its inverse will be denoted by θ(�). Due to the bijection it is always possible to
choose a suitable characterization of the stationary state either with the chemical potential θ

or with the corresponding density �.
As for our examples, the ASEP has a Bernoulli product stationary distribution of which

the density parameter is

ρ(θ) = eθ

1 + eθ
. (8)

In the case of both our exponential GZRP and BLP examples, computing the factorials
in (6) results in the discrete Gaussian

μθ(z) = eθ2/2β

Z(θ)
· e− β

2 ·
(
z− θ

β

)2

, z ∈ Z,

from which

Z(θ) = eθ2/2β ·
∞∑

z=−∞
e− β

2 ·
(
z− θ

β

)2

.

While no explicit form is available for the partition sum Z(θ), the identity

Z(θ − β) = eβ/2−θ · Z(θ) (9)

can easily be shown. Via (7) this implies

ρ(θ − β) = ρ(θ) − 1 (10)

for the exponential GZRP and BLP processes. Notice also that

μθ−β(y) = μθ(y + 1). (11)

2.3 Hydrodynamics, Very Briefly

In preparation for stating the result, we first briefly mention that it is believed, and in many
cases proved, that models of our family satisfy a conservation law of the form

∂T ρ(T , X) + ∂X H(ρ(T , X)) = 0 (12)

in the Eulerian scaling, with the density ρ being a function of the rescaled time and space
variables T and X, and H(�), the flux function, being the expected net current in the sta-
tionary measure with density � (recall (7)):

H(�) =
∑

y,z∈I

[p(y, z) − q(y, z)] · μθ(�)(y)μθ(�)(z).
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See e.g. Rezakhanlou [25] or Bahadoran, Guiol, Ravishankar and Saada [2] for details.
At time zero let the density profile be a step function: ρ(0, X) ≡ � for X < 0 and

ρ(0, X) ≡ λ for X > 0. This initial condition corresponds to a shock if � < λ and H is
concave, or if � > λ and H is convex. The entropy solutions of (12) in these cases are rigid
translations of the shock with the Rankine-Hugoniot velocity

V = H(λ) − H(�)

λ − �
. (13)

From this formula one can check that multiple shocks eventually meet and merge into a
single shock having the leftmost and the rightmost of the initial density values on its left and
right sides, respectively.

It is easy to see that for the ASEP we have

H(�) = (p − q) · �(1 − �)

which is a concave function (p > q). It is also straightforward from the definitions that

H(�) = eθ(�) and H(�) = eθ(�) + e−θ(�)

for the GZRP and BLP examples, respectively. Due to the lack of an explicit formula for
θ(�), it is a nontrivial fact that both these flux functions are convex when the rate functions
f are convex [6].

2.4 The Second Class Particle

Attractivity (2) makes it possible to define the second class particle. Let δj be the vector of
components 1 for site j , and 0 for all other sites in Z. Let ω ∈ �̃ such that ωj < ωmax, and

ζ := ω + δj . (14)

We say that there is a second class particle at site j . We let the pair (ω, ζ ) evolve in the
basic coupling. That is, assuming and making use of (14), the effect of the coupled generator
(which we also denote by L) for a finite cylinder function ϕ of a pair (ω, ζ ) is

(Lϕ)(ω, ζ ) =
j−2∑

i=a−1

p(ωi, ωi+1) · [ϕ(ωi,i+1, ζ i,i+1) − ϕ(ω, ζ )
]

(15)

+
b∑

i=j+1

p(ωi, ωi+1) · [ϕ(ωi,i+1, ζ i,i+1) − ϕ(ω, ζ )
]

+ p(ωj−1, ωj + 1) · [ϕ(ωj−1,j , ζ j−1,j ) − ϕ(ω, ζ )
]

+ [
p(ωj−1, ωj ) − p(ωj−1, ωj + 1)

] · [ϕ(ωj−1,j , ζ ) − ϕ(ω, ζ )
]

(16)

+ p(ωj , ωj+1) · [ϕ(ωj,j+1, ζ j,j+1) − ϕ(ω, ζ )
]

+ [
p(ωj + 1, ωj+1) − p(ωj , ωj+1)

] · [ϕ(ω, ζ j,j+1) − ϕ(ω, ζ )
]

(17)

+
j−2∑

i=a−1

q(ωi, ωi+1) · [ϕ(ωi+1,i , ζ i+1,i ) − ϕ(ω, ζ )
]
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+
b∑

i=j+1

q(ωi, ωi+1) · [ϕ(ωi+1,i , ζ i+1,i ) − ϕ(ω, ζ )
]

+ q(ωj−1, ωj ) · [ϕ(ωj,j−1, ζ j,j−1) − ϕ(ω, ζ )
]

+ [
q(ωj−1, ωj + 1) − q(ωj−1, ωj )

] · [ϕ(ω, ζ j,j−1) − ϕ(ω, ζ )
]

(18)

+ q(ωj + 1, ωj+1) · [ϕ(ωj+1,j , ζ j+1,j ) − ϕ(ω, ζ )
]

+ [
q(ωj , ωj+1) − q(ωj + 1, ωj+1)

] · [ϕ(ωj+1,j , ζ ) − ϕ(ω, ζ )
]
, (19)

where ϕ depends on the configuration over the sites a . . . b. We assume that a < −1 < 1 < b.
This generator gives the correct marginal evolution for each ω and ζ . Only steps (16)–(19)
influence the second class particle. In fact these steps result in jumps of this particle, hence
the single second class particle is conserved for all times.

Constructing the dynamics of a coupled pair with any number of second class particles
can be done along the same lines, and their number is again conserved, see the generator for
that case in Sect. 3.2.

3 Shock Measures with Second Class Particles

We now define product shock measures with a single second class particle on a coupled pair
of processes. Later on multiple shocks and second class particles will be considered, but
the case of one second class particle is much simpler, so we first demonstrate it here. The
marginals will be like the (6) stationary ones, except for one site which has the second class
particle. Define, for θ < θ < θ̄ , the one-site marginal νθ on I × I by

νθ (y, z) =
{

μθ(y), if y = z,

0, if y �= z,

where μθ is the stationary marginal (6). Let also μ̂ be a measure on I such that μ̂(ωmax) = 0
if ωmax is finite. Define

ν̂(y, z) =
{

μ̂(y), if z = y + 1,

0, otherwise.

With these marginals and with θ < θ, σ < θ̄ we define the product measure

νj :=
⊗

i<j

νθ
⊗

i=j

ν̂
⊗

i>j

νσ (20)

of marginals νθ on the left of site j , ν̂ at j , and νσ on the right of site j . Therefore, νj is a
measure on coupled pairs with exactly one second class particle at site j .

In the case of the ASEP it is more convenient to use the densities as parameters instead
of fugacities. Here, with a slight abuse of notation, the results are expressed in terms of
� = ρ(θ) and λ = ρ(σ) being the left and right densities correspondingly, according to (8).

3.1 Results for a Single Shock

The main result is on the time-evolution of some particular distributions of a coupled pair
(ω(t), ζ (t)) of some particular models. We use the semigroup notation for the evolution
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of such a distribution, so νS(t) denotes the distribution of the pair at time t if the initial
distribution at time 0 was ν. Recall the definition (20).

Theorem 1 The identity

d

dt
νjS(t)

∣
∣∣
t=0

= P · [νj+1 − νj ] + Q · [νj−1 − νj ] (21)

holds, in the sense of test functions, in the following special cases with the following para-
meters P and Q:

– For the ASEP, if the relation

λ(1 − �)

�(1 − λ)
= p

q
(22)

holds between the densities and the asymmetry, and

μ̂(0) = 1. (23)

In this case

P = 1 − λ

1 − �
· p = λ

�
· q = (1 − λ)p + λq and

Q = 1 − �

1 − λ
· q = �

λ
· p = (1 − �)q + �p.

(24)

– For the exponential GZRP and BLP as defined in Sect. 2.1, if the relation

θ − σ = β (25)

holds between the parameters, and

μ̂(y) = μσ (y). (26)

In this case we have

P = eθ − eσ and Q = 0 for the GZRP,

P = eθ − eσ and Q = e−σ − e−θ for the BLP.
(27)

The only way to have a second class particle at j in ASEP is ωj = 0 and ζj = 1. This fact
is of course reflected in the form of ν̂. This is not the case for GZRP and BLP, where the
marginals for ωj and ζj are not a priori restricted in any way. The result turns out to require
these marginals to be μσ and μθ , respectively (this latter being a consequence of (11)).

Remark 1 As in [8] and [4], (21) has a natural random walk interpretation: the shock mea-
sure νj , with the second class particle in the middle, performs an asymmetric simple random
walk. The drift P −Q of this walk agrees with the Rankine Hugoniot velocity (13). This can
be seen for the ASEP from the definitions and using the relation (22). For the exponential
GZRP and BLP models the relation (25) together with (10) can be used to check this.
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We remark here that a theorem, similar in spirit, will be shown in Sect. 5.2 for the branch-
ing coalescing random walk model.

In [8] a shock measure with density � for sites at or left of j and λ on the right of site j

was first considered. It was shown there that this structure performs a random walk with the
above jump rates. In view of our result, mixing the two marginals of νj leads to [8]’s shock
measure: flip a biased coin initially, and with probability λ follow the distribution of the
upper process ζ while with probability 1 − λ follow the lower process ω. Later on, in their
Theorem 2, Belitsky and Schütz in [8] put particles at the positions of the shocks to describe
interaction (see our Sect. 3.2 for interaction of shocks), and they also remark that these are
not the second class particles. However, their setting is also obtained from our results by
considering the second marginal ζ of νj . Therefore, their particles at the shock positions
can also be viewed as second class particles. Later on, the idea of random walking shocks
with second class particles at the shock positions appeared in the form of a conjecture in
[18] in the context of the ASEP with open boundaries.

We recover the results of [4] if we only consider the first marginal ω of νj for the expo-
nential BLP.

3.2 Results for Multiple Shocks

While we tried to keep notations as simple as possible for a single shock, multiple shocks
seem to require a more complicated treatment. We describe below and use a formalism
capable of handling multiple shocks with second class particles. First we rewrite (15) in the
general case, only assuming ωi ≤ ζi for each i ∈ Z:

(Lϕ)(ω, ζ ) =
b∑

i=a−1

{
p(ωi, ζi+1) · [ϕ(ωi,i+1, ζ i,i+1) − ϕ(ω, ζ )

]
(28)

+ [
p(ωi, ωi+1) − p(ωi, ζi+1)

] · [ϕ(ωi,i+1, ζ ) − ϕ(ω, ζ )
]

(29)

+ [
p(ζi, ζi+1) − p(ωi, ζi+1)

] · [ϕ(ω, ζ i,i+1) − ϕ(ω, ζ )
]

(30)

+ q(ζi, ωi+1) · [ϕ(ωi+1,i , ζ i+1,i ) − ϕ(ω, ζ )
]

+ [
q(ζi, ζi+1) − q(ζi, ωi+1)

] · [ϕ(ω, ζ i+1,i ) − ϕ(ω, ζ )
]}

(31)

+ [
q(ωi, ωi+1) − q(ζi, ωi+1)

] · [ϕ(ωi+1,i , ζ ) − ϕ(ω, ζ )
]
. (32)

Again, the above differences of jump rates are nonnegative, and marginally both ω and ζ

evolve according to the original dynamics. Moreover, the generator keeps ωi ≤ ζi for each
site.

Let m ≥ 0 be an integer and θ < σ < θ̄ a parameter value. Define the one-site marginal
of a coupled pair ω, ζ by

νσ,m(y, z) =
{

μ̂σ,m(y), if z = y + m,

0, if z �= y + m.

In our examples this marginal will coincide with the stationary marginal (6) if m = 0. When
m > 0, it describes a distribution on a site with m second class particles; ω = ζ −m then has
distribution μ̂σ,m. We require that μ̂σ,m gives probability zero on values y > ωmax −m when
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ωmax is finite. Now with a vector m of nonnegative integer components mi and a parameter
vector σ , define the product measure

νσ,m :=
⊗

i∈Z

νσi ,mi (33)

on pairs (ω, ζ ). This measure describes mi second class particles at site i with marginal
μ̂σi ,mi for ωi = ζi − mi and, in our examples, stationary marginals μ̂σi ,0 = μσi at other sites
with no second class particles. We assume a finite number of second class particles in the
system that is,

∑
i∈Z

mi < ∞.
In the ASEP case we still use (8) and switch to the �i parametrization. We also adopt the

notation (1) for mi,j , while σ i,j will be some modified parameter vector which we specify
below in the theorem:

Theorem 2 The identity

d

dt
νσ,mS(t)

∣∣∣
t=0

=
∑

i∈Z

P (mi, mi+1, σi, σi+1) · [νσi,i+1,mi,i+1 − νσ,m
]

+ Q(mi, mi+1, σi, σi+1) · [νσi+1,i ,mi+1,i − νσ,m
]

(34)

holds, in the sense of test functions, in the following special cases with the following para-
meters σ i,i+1, σ i+1,i , P (mi, mi+1, σi, σi+1) and Q(mi, mi+1, σi, σi+1):

– For the ASEP, if mi = 0 or 1, and the relation

�i+1(1 − �i)

�i(1 − �i+1)
=

{
1, if mi+1 = 0,
p

q
, if mi+1 = 1 (35)

holds between the densities and the asymmetry, and

μ̂�,m(0) = 1 − μ̂�,m(1) =
{

1 − �, if m = 0,

1, if m = 1.
(36)

In this case

�
i,i+1
j =

{
�j , for j �= i,

�i−1, for j = i,
(37)

�
i+1,i
j =

{
�j , for j �= i,

�i+1, for j = i, and
(38)

P (mi, mi+1, �i, �i+1) = mi(1 − mi+1) · [(1 − �i+1)p + �i+1q
]
, (39)

Q(mi, mi+1, �i, �i+1) = (1 − mi)mi+1 · [(1 − �i)q + �ip
]
. (40)

– For the exponential GZRP and BLP as defined in Sect. 2.1, if the relation

σi−1 − σi = βmi (41)

holds between the parameters, and

μ̂σ,m(y) = μσ (y),
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the stationary marginal (6), regardless of m. In this case we have

σ
i,i+1
j =

{
σj , for j �= i,

σi + β, for j = i,
(42)

σ
i+1,i
j =

{
σj , for j �= i,

σi − β, for j = i,
(43)

P (mi, mi+1, σi, σi+1) = eσi+βmi − eσi and (44)

Q(mi, mi+1, σi, σi+1) = 0 for the GZRP, (45)

P (mi, mi+1, σi, σi+1) = eσi+βmi − eσi and (46)

Q(mi, mi+1, σi, σi+1) = e−σi+1 − e−σi+1−βmi+1 for the BLP. (47)

First notice that (37)–(38) and (42)–(43) keep (35) and (41), respectively, valid after each
jump. Also notice that this theorem reduces to Theorem 1 in the case of a single shock. In
(44)–(47), the exponents σj + βmj are simply the parameter values of the ζj marginal or
the coupled pair (ωj , ζj ) due to (11).

In both the ASEP and the GZRP/BLP, the result can be given a simple interpretation.
Thinking about the process m(t) of second class particles, the right-hand side (34) is a
generator of the interacting system m(t). Then the evolution rules for the densities keep the
necessary conditions (35) and (41) valid by adjusting the density values to m(t).

For the ASEP (34), together with (39)–(40), looks like an asymmetric exclusion process
except that the (annealed) jump rates of the second class particles depend on the density
values. Due to the exclusion rule, these particles always keep their order, and (39)–(40)
simply say that their right jump rates decrease and left jump rates increase as we go from the
leftmost to the rightmost second class particle. (Recall that p > q and the density increases
from left to right at each second class particle.) The second class particles thus stay within
a tight distance from each other, which is already invisible on the macroscopic scale of the
conservation law. We show in the Appendix that the velocity of this structure of shocks
agrees with the Rankine Hugoniot velocity (13) taken with the leftmost and the rightmost
density values. Once the particles, put in the shock positions in [8], are replaced with our
second class particles, our result coincides with the interaction of the random walking shocks
of [8].

For the exponential GZRP/BLP, (34) with the rates (44)–(47) becomes a zero range-type
generator i.e., the (annealed) jump rate of a second class particle only depends on the local
configuration at its site. However, these jump rates again depend, via the parameter values
σ , on the number of other second class particles in front and behind. This dependence is
such that the more behind, the greater right jump rate and smaller left jump rate for a second
class particle. Lemma 4.3 from [4] is word for word valid also with second class particles:
the n particles stay within a tight distance from each other, and their center of mass performs
a drifted simple random walk on the lattice Z/n with right jump rate eσleft − eσright and left
jump rate e−σright − e−σleft for BLP and zero for GZRP. Here σleft is the leftmost, σright is the
rightmost value of σi . The resulting drift of the center of mass of course coincides with the
Rankine-Hugoniot velocity for a large shock of densities ρ(σleft) and ρ(σright).
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4 Proofs

4.1 The Proof for a Single Shock

Proof of Theorem 1 We assume, without loss of generality, that j = 0. To prove Theorem
1 we take a finite cylinder function ϕ on �̃2 and see how the coupled generator (15) acts
on ϕ under E0, the expectation w.r.t. ν0. This expectation involves summations for all ωi

variables. We shall change the summation variables in each term where the argument of ϕ

is modified such that, after the change, each term will contain ϕ(ω, ζ ).
Lines (16)–(19) describe jumps of the second class particle. For all the other lines, the

second class particle stays at site 0, and the change of variables can be done without much
complications. In the term with ϕ(ω−1,0, ζ−1,0) in the second line, for example, we will put
ω−1,0 and ζ−1,0 as our new summation variables. This step will change the arguments of the
rates, and it will also bring in factors of μθ and μ̂.

For lines (16)–(19), however, there is a complication. While E0 gives probability one
on ζ0 = ω0 + 1, this will not hold after the change of variables. As an example, the new
variables for the term with ϕ(ω−1,0, ζ ) in line (16) are ω−1,0 and ζ , for which we rather
have

ζ−1 = ω
−1,0
−1 + 1 and ζ0 = ω

−1,0
0 .

This is the manifestation of the fact that (16) describes a left jump of the second class particle
from site 0 to site −1. Notice that this new configuration (ω−1,0, ζ ) is now singular to the
measure ν0, but not to ν−1. Therefore the change of variables will also include a change in
the expectation from E0 to E−1 for that term in line (16).

The result of changing variables will be of the form

E0(Lϕ)(ω, ζ ) = E0

{
ϕ(ω, ζ ) ·A}+E−1

{
ϕ(ω, ζ ) · [B+D]}+E1

{
ϕ(ω, ζ ) · [C+E]}, (48)

where B comes from the term with ϕ(ω−1,0, ζ ) of line (16), C comes from the term with
ϕ(ω, ζ 0,1) of line (17), D comes from the term with ϕ(ω, ζ 0,−1) of line (18), E comes from
the term with ϕ(ω1,0, ζ ) of line (19), and A from all other terms. The aim is to show that A,
B + D, and C + E each do not depend on the variables ωa . . .ωb . In fact, B + D will give
Q, C + E will amount to P , while A will make up for the negative terms −P − Q in (21).
We now compute the quantities A–E.

We start with A and write it line for line as terms come from (15):

A =
−2∑

i=a−1

[
p(ωi + 1, ωi+1 − 1) · μθ(ωi + 1)μθ (ωi+1 − 1)

μθ (ωi)μθ (ωi+1)
− p(ωi, ωi+1)

]

+
b∑

i=1

[
p(ωi + 1, ωi+1 − 1) · μσ (ωi + 1)μσ (ωi+1 − 1)

μσ (ωi)μσ (ωi+1)
− p(ωi, ωi+1)

]

+ p(ω−1 + 1, ω0) · μθ(ω−1 + 1)μ̂(ω0 − 1)

μθ (ω−1)μ̂(ω0)
− p(ω−1, ω0 + 1)

− p(ω−1, ω0) + p(ω−1, ω0 + 1)

+ p(ω0 + 1, ω1 − 1) · μ̂(ω0 + 1)μσ (ω1 − 1)

μ̂(ω0)μσ (ω1)
− p(ω0, ω1)
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− p(ω0 + 1, ω1) + p(ω0, ω1)

+
−2∑

i=a−1

[
q(ωi − 1, ωi+1 + 1) · μθ(ωi − 1)μθ (ωi+1 + 1)

μθ (ωi)μθ (ωi+1)
− q(ωi, ωi+1)

]

+
b∑

i=1

[
q(ωi − 1, ωi+1 + 1) · μσ (ωi − 1)μσ (ωi+1 + 1)

μσ (ωi)μσ (ωi+1)
− q(ωi, ωi+1)

]

+ q(ω−1 − 1, ω0 + 1) · μθ(ω−1 − 1)μ̂(ω0 + 1)

μθ (ω−1)μ̂(ω0)
− q(ω−1, ω0)

− q(ω−1, ω0 + 1) + q(ω−1, ω0)

+ q(ω0, ω1 + 1) · μ̂(ω0 − 1)μσ (ω1 + 1)

μ̂(ω0)μσ (ω1)
− q(ω0 + 1, ω1)

− q(ω0, ω1) + q(ω0 + 1, ω1).

Then

B + D = [
p(ω−1 + 1, ω0 − 1) − p(ω−1 + 1, ω0)

] · μθ(ω−1 + 1)μ̂(ω0 − 1)

μ̂(ω−1)μσ (ω0)

+ [
q(ω−1, ω0 + 1) − q(ω−1, ω0)

] · μθ(ω−1)μ̂(ω0)

μ̂(ω−1)μσ (ω0)
, (49)

and

C + E = [
p(ω0 + 1, ω1) − p(ω0, ω1)

] · μ̂(ω0)μ
σ (ω1)

μθ (ω0)μ̂(ω1)

+ [
q(ω0 − 1, ω1 + 1) − q(ω0, ω1 + 1)

] · μ̂(ω0 − 1)μσ (ω1 + 1)

μθ (ω0)μ̂(ω1)
. (50)

We now simplify the expression of A by plugging in the fraction of μθ ’s from (6). In the
summations we also make use of

p(ωi + 1, ωi+1 − 1) · f (ωi+1)

f (ωi + 1)
= p(ωi+1, ωi) and

q(ωi − 1, ωi+1 + 1) · f (ωi)

f (ωi+1 + 1)
= q(ωi+1, ωi),

a consequence of (4), and then

p(ωi, ωi−1) − p(ωi−1, ωi) + p(ωi+1, ωi) − p(ωi, ωi+1)

+ q(ωi, ωi−1) − q(ωi−1, ωi) + q(ωi+1, ωi) − q(ωi, ωi+1)

= p(ωi+1, ωi−1) − p(ωi−1, ωi+1) + q(ωi+1, ωi−1) − q(ωi−1, ωi+1), (51)

which is a rewriting of (3). This latter produces a telescopic sum.

A = p(ωb+1, ωa−1) − p(ωa−1, ωb+1) + q(ωb+1, ωa−1) − q(ωa−1, ωb+1)
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+ p(ω−1 + 1, ω0) · eθ · μ̂(ω0 − 1)

f (ω−1 + 1)μ̂(ω0)
− p(ω0, ω−1)

+ p(ω0 + 1, ω1 − 1) · μ̂(ω0 + 1) · e−σ · f (ω1)

μ̂(ω0)
− p(ω0 + 1, ω1)

+ p(ω0, ω1) − p(ω1, ω0)

+ q(ω−1 − 1, ω0 + 1) · e−θ · f (ω−1)μ̂(ω0 + 1)

μ̂(ω0)
− q(ω−1, ω0 + 1)

+ q(ω−1, ω0) − q(ω0, ω−1)

+ q(ω0, ω1 + 1) · μ̂(ω0 − 1) · eσ

μ̂(ω0)f (ω1 + 1)
− q(ω1, ω0). (52)

Checking if random walking shocks with second class particles emerge in a model now
simplifies to checking the existence of a measure μ̂ with which the terms A, B + D, C + E

each do not depend on ω−1, ω0, ω1. (Recall that ϕ depends on configurations of sites a . . . b,
hence A is allowed to depend on ωa−1 and ωb+1.) When ωmax is finite, one also has to take
into account the fact that B +D, C +E and A are taken under E−1, E1 and E0, respectively,
which give zero weight on ω−1 = ωmax, ω1 = ωmax and ω0 = ωmax, respectively.

Substituting the rates of ASEP, (22) and (23) give for (49), (50):

B + D = q · 1 − �

1 − λ
= Q, C + E = p · 1 − λ

1 − �
= P,

in agreement with (24). We obtain, also using (8), from (52)

A = (p − q)(ωb+1 − ωa−1) − 1.

Its expectation w.r.t. E0 can be directly computed since ϕ does not depend on ωb+1 nor ωa−1,
and E0 is product:

E0A = (p − q) · (λ − �) − 1 = −q · 1 − �

1 − λ
− p · 1 − λ

1 − �

which finishes the proof for ASEP by (48), (21) and (24).
The rates p(y, z) = f (y) = eβ(y−1/2) and q(y, z) = 0 of the exponential GZRP result in

B + D = 0 = Q, C + E = eθ − eσ = P,

where we used (6), (26), (9) together with (25). This again agrees with (27). From (52) we
get

A = f (ωb+1) − f (ωa−1),

which becomes eσ − eθ under the expectation of the product measure ν0, also in agreement
with (27). Similar computations for the exponential BLP lead to

B + D = e−σ − e−θ = Q, C + E = eθ − eσ = P,

A = f (ωb+1) + f (−ωa−1) − f (ωa−1) − f (−ωb+1),

which becomes eσ + e−θ − eθ − e−σ under E0. �
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4.2 The Proof for Multiple Shocks

Proof of Theorem 2 Expectation w.r.t. νσ,m (33) will be denoted by Eσ,m. Take a finite
cylinder function that depends on pairs (ωi, ζi) for a ≤ i ≤ b and assume that mi = 0 for
i ≤ a and i ≥ b. (This implies, in particular, a finite number of second class particles in the
system.) We will take the Eσ ,m expectation of (28) and change variables in some terms so
that after the change we have ϕ(ω, ζ ) in each one. This expectation involves summations for
all ωi variables. We shall change the summation variables in each term where the argument
of ϕ is modified such that, after the change, each term will contain ϕ(ω, ζ ). Lines (29)–(32)
describe jumps of second class particles. For all the other lines, the second class particle
stays at site i, and the change of variables can be done without much complications. In the
term with ϕ(ωi,i+1, ζ i,i+1) in the first line, for example, we will put ωi,i+1 and ζ i,i+1 as our
new summation variables. This step will change the arguments of the rates, and it will also
bring in factors of νσi ,mi and νσi+1,mi+1 . We will also make use of ζi = ωi + mi which is a
probability one event under Eσ,m.

For lines (29)–(32), however, notice that the change of variables influences the number
of second class particles, and the measures νσ,m are singular to each other with different
vectors m. Therefore with the change of variables we will also include a replacement of
measures accordingly.

These changes result in

Eσ ,m(Lϕ)(ω, ζ ) =
b∑

i=a−1

{
Eσ ,m

{
ϕ(ω, ζ ) · Ai

} + Eσ i+1,i ,mi+1,i {
ϕ(ω, ζ ) · [Bi + Di]

}

+ Eσ i,i+1,mi,i+1{
ϕ(ω, ζ ) · [Ci + Ei]

}}
, (53)

where Bi comes from the term with ϕ(ωi,i+1, ζ ) of line (29), Ci comes from the term with
ϕ(ω, ζ i,i+1) of line (30), Di comes from the term with ϕ(ω, ζ i+1,i ) of line (31), Ei comes
from the term with ϕ(ωi+1,i , ζ ) of line (32), and Ai from all other terms. The aim is again
to show that Bi + Di , Ci + Ei , and the sum of Ai ’s each do not depend on ωa . . .ωb . In fact,
they will be identified as the rates (39), (40), and (44)–(47), respectively. We now compute
the quantities Ai–Ei .

Ai = p(ωi + 1, ωi+1 + mi+1 − 1) · μ̂σi ,mi (ωi + 1)μ̂σi+1,mi+1(ωi+1 − 1)

μ̂σi ,mi (ωi)μ̂
σi+1,mi+1(ωi+1)

− p(ωi, ωi+1 + mi+1)

− p(ωi, ωi+1) + p(ωi, ωi+1 + mi+1)

− p(ωi + mi, ωi+1 + mi+1) + p(ωi, ωi+1 + mi+1)

+ q(ωi + mi − 1, ωi+1 + 1) · μ̂σi ,mi (ωi − 1)μ̂σi+1,mi+1(ωi+1 + 1)

μ̂σi ,mi (ωi)μ̂
σi+1,mi+1(ωi+1)

− q(ωi + mi, ωi+1)

− q(ωi + mi, ωi+1 + mi+1) + q(ωi + mi, ωi+1)

− q(ωi, ωi+1) + q(ωi + mi, ωi+1)

= p(ωi + 1, ωi+1 + mi+1 − 1) · μ̂σi ,mi (ωi + 1)μ̂σi+1,mi+1(ωi+1 − 1)

μ̂σi ,mi (ωi)μ̂
σi+1,mi+1(ωi+1)
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− p(ωi, ωi+1) + p(ωi, ωi+1 + mi+1) − p(ωi + mi, ωi+1 + mi+1)

+ q(ωi + mi − 1, ωi+1 + 1) · μ̂σi ,mi (ωi − 1)μ̂σi+1,mi+1(ωi+1 + 1)

μ̂σi ,mi (ωi)μ̂
σi+1,mi+1(ωi+1)

− q(ωi + mi, ωi+1 + mi+1) + q(ωi + mi, ωi+1) − q(ωi, ωi+1), (54)

Bi + Di = [
p(ωi + 1, ωi+1 − 1) − p(ωi + 1, ωi+1 + mi+1 − 1)

]

× μ̂σi ,mi (ωi + 1)μ̂σi+1,mi+1(ωi+1 − 1)

μ̂σ
i+1,i
i

,mi+1(ωi)μ̂
σ

i+1,i
i+1 ,mi+1−1(ωi+1)

+ [
q(ωi + mi, ωi+1 + mi+1) − q(ωi + mi, ωi+1)

]

× μ̂σi ,mi (ωi)μ̂
σi+1,mi+1(ωi+1)

μ̂σ
i+1,i
i

,mi+1(ωi)μ̂
σ

i+1,i
i+1 ,mi+1−1(ωi+1)

, (55)

Ci + Ei = [
p(ωi + mi, ωi+1 + mi+1) − p(ωi, ωi+1 + mi+1)

]

× μ̂σi ,mi (ωi)μ̂
σi+1,mi+1(ωi+1)

μ̂σ
i,i+1
i

,mi−1(ωi)μ̂
σ

i,i+1
i+1 ,mi+1+1(ωi+1)

+ [
q(ωi − 1, ωi+1 + 1) − q(ωi + mi − 1, ωi+1 + 1)

]

× μ̂σi ,mi (ωi − 1)μ̂σi+1,mi+1(ωi+1 + 1)

μ̂σ
i,i+1
i

,mi−1(ωi)μ̂
σ

i,i+1
i+1 ,mi+1+1(ωi+1)

. (56)

While these formulas are much more general and complicated than (52), (49) and (50), they
can be used to verify Theorem 2.

We start with plugging in the rates of ASEP and (35), (36).

Ai = p1{ωi = 0, ωi+1 = 1, mi = 0, mi+1 = 0} · �i(1 − �i+1)

(1 − �i)�i+1

− p1{ωi = 1, ωi+1 = 0} + p1{ωi = 1, ωi+1 = 0, mi+1 = 0}
− p1{ωi = 0, ωi+1 = 0, mi = 1, mi+1 = 0}
− p1{ωi = 1, ωi+1 = 0, mi = 0, mi+1 = 0}

+ q1{ωi = 1, ωi+1 = 0, mi = 0, mi+1 = 0} · (1 − �i)�i+1

�i(1 − �i+1)

− q1{ωi = 0, ωi+1 = 1, mi = 0, mi+1 = 0}
− q1{ωi = 0, ωi+1 = 0, mi = 0, mi+1 = 1}
+ q1{ωi = 0, ωi+1 = 1, mi = 0} − q1{ωi = 0, ωi+1 = 1}

= (p − q)
[
ωi+1(1 − mi+1) − ωi(1 − mi)

]

− pmi(1 − mi+1) − q(1 − mi)mi+1.

In the second equality we used that μ̂�,1(1) = 0 in Eσ,m, hence any situation with ωj = 1,
mj = 1 does not occur. Validity of the equation can be directly checked for the remaining 9
cases of ω′s and m’s being 0 or 1.

Bi + Di = p1{ωi = 0, ωi+1 = 1, mi = 0, mi+1 = 1} �i

�i+1
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+ q1{ωi = 0, ωi+1 = 0, mi = 0, mi+1 = 1} 1 − �i

1 − �i+1

= p(1 − mi)mi+1 · �i

�i+1
= (1 − mi)mi+1 · [(1 − �i)q + �ip

]

using (35) and the fact that the indicators imply m
i+1,i
i = 1 and therefore necessarily ωi = 0

under Eσ i+1,i ,mi+1,i
. Similarly,

Ci + Ei = p1{ωi = 0, ωi+1 = 0, mi = 1, mi+1 = 0}1 − �i+1

1 − �i−1

+ q1{ωi = 1, ωi+1 = 0, mi = 1, mi+1 = 0}�i+1

�i−1

= qmi(1 − mi+1) · �i+1

�i−1
= mi(1 − mi+1) · [(1 − �i+1)p + �i+1q

]
.

Compare these with (40) and (39). Now we redistribute some terms from the Ai ’s and write
(53) as

Eσ,m(Lϕ)(ω, ζ )

=
b∑

i=a−1

{
(1 − mi)mi+1

[
(1 − �i)q + �ip

]

× [
Eσ i+1,i ,mi+1,i

ϕ(ω, ζ ) − Eσ ,mϕ(ω, ζ )
]

+ mi(1 − mi+1)
[
(1 − �i+1)p + �i+1q

]

× [
Eσ i,i+1,mi,i+1

ϕ(ω, ζ ) − Eσ,mϕ(ω, ζ )
]}

+ (p − q)Eσ ,mϕ(ω, ζ )

b∑

i=a−1

[
ωi+1(1 − mi+1) − ωi(1 − mi)

− �i+1mi(1 − mi+1) + �i(1 − mi)mi+1
]
.

The proof for ASEP is done as soon as we see that the last two lines sum up to zero. Without
loss of generality, let mi = 0 for each i ≤ a and i ≥ b. The terms with ω’s are telescopic,
and the terms in the bracket will only have ωa−1 and ωb+1 in them. These become �a−1 and
�b+1, respectively, under the product expectation. Therefore the expectation transforms the
summation into

�b+1 − �a−1 −
b∑

i=a−1

[
�i+1mi(1 − mi+1) − �i(1 − mi)mi+1

]
. (57)

Since there are finitely many second class particles, there is a leftmost site r1 such that
mr1 = 0 and mr1+1 = 1. We successively define

�k : = inf{i : i > rk, mi = 1, mi+1 = 0}, and

rk+1 : = inf{i : i > rk, mi = 0, mi+1 = 1}.
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We let inf∅ = ∞, and K = max{k : rk < ∞}. For any i with �k < i < rk+1 we have mi =
mi+1 = 0, and for any i with rk < i < �k we have mi = mi+1 = 1. Therefore, the summand
is zero for all these cases, and

b∑

i=a−1

[
�i+1mi(1 − mi+1) − �i(1 − mi)mi+1

]

=
K∑

k=1

[��k+1 − �rk ] = ��K+1 − �r1 +
K−1∑

k=1

[��k+1 − �rk+1 ].

Notice also that by (35) �i is unchanged over an interval without second class particles.
Hence the sum in the last display is zero, and ��K+1 = �b+1, �r1 = �a−1 implies that (57) is
zero which finishes the proof for ASEP.

We now turn to the exponential GZRP and BLP models. Substituting into (54), (55) and
(56) gives

Ai = eβ(ωi+1+mi+1)−β/2 − eβ(ωi+mi)−β/2,

Bi + Di = 0,

Ci + Ei = eσi+βmi − eσi

for the GZRP, and

Ai = (
eβ(ωi+1+mi+1)−β/2 − eβ(ωi+mi)−β/2

) − (
e−βωi+1−β/2 − e−βωi−β/2

)
,

Bi + Di = e−σi+1 − e−σi+1−βmi+1 ,

Ci + Ei = eσi+βmi − eσi

for the BLP, where we also used (9). Thus we identified these terms with (44)–(47) as re-
quired. Notice that Ai is of gradient form, thus summing it in the first line of (53) gives

b∑

i=a−1

Ai = eβ(ωb+1+mb+1)−β/2 − eβ(ωa−1+ma−1)−β/2

= f (ωb+1 + mb+1) − f (ωa−1 + ma−1) for GZRP,

= (
eβ(ωb+1+mb+1)−β/2 − eβ(ωa−1+ma−1)−β/2

) − (
e−βωb+1−β/2 − e−βωa−1−β/2

)

= f (ωb+1 + mb+1) − f (ωa−1 + ma−1) − f (−ωb+1) + f (−ωa−1) for BLP.

We again can assume finitely many second class particles inside the discrete interval [a, b].
Product structure of the measure then allows us to compute the above and show that the first
line of (53) equals

b∑

i=a−1

Eσ ,m
{
ϕ(ω, ζ ) · Ai

}

= [
eσb+1 − eσa−1

] · Eσ ,mϕ(ω, ζ ) for GZRP,

= [
eσb+1 − eσa−1 − e−σb+1 + e−σa−1

] · Eσ,mϕ(ω, ζ ) for BLP.
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These brackets can be broken up into (notice that σi is constant near the boundaries)

b∑

i=a−1

[
eσi+1 − eσi

] =
b∑

i=a−1

[
eσi − eσi−1

] =
b∑

i=a−1

[
eσi − eσi+βmi

]

for the GZRP, and

b∑

i=a−1

[
eσi+1 − eσi − e−σi+1 + e−σi

] =
b∑

i=a−1

[
eσi − eσi+βmi − e−σi+1 + e−σi+1−βmi+1

]

for the BLP. These give the negative terms in (34) and the proof is done. �

5 Branching Coalescing Random Walk

5.1 The Model

In this section we investigate the random walking shock structure found in the branching
coalescing random walk model (BCRW) by Krebs, Jafarpour, Schütz [18]. This model does
not conserve the particle number, it is not a member of the family of Sect. 2. However, the
result we show below is very similar to Theorem 1.

Besides (1), we introduce ωi↑ and ωi↓ corresponding to particle creation and annihilation
on site i by

ω
i↑
k =

{
ωk, for k �= i,

ωk + 1, for k = i,
ω

i↓
k =

{
ωk, for k �= i,

ωk − 1, for k = i.

The BCRW is a particle system on {0, 1}Z, and the dynamics consists of three types of
processes. Asymmetric nearest neighbour jumps (like in the ASEP):

ω → ωi,i+1 with rate p · ωi(1 − ωi+1),

ω → ωi+1,i with rate q · (1 − ωi)ωi+1,

coalescence (i.e., merging of two particles into one) from the left and from the right:

ω → ωi↓ with rate cr · ωiωi+1,

ω → ωi+1↓ with rate cl · ωiωi+1,

and branching (i.e., creation of a new particle next to an existing one) to the left and to the
right:

ω → ωi↑ with rate bl · (1 − ωi)ωi+1,

ω → ωi+1↑ with rate br · ωi(1 − ωi+1).

The factors in the rates here are positive real numbers. The generator of the process (with a
finite cylinder function ϕ) is

(Lϕ)(ω) =
b∑

i=a−1

{
p · ωi(1 − ωi+1)[ϕ(ωi,i+1) − ϕ(ω)] + q · (1 − ωi)ωi+1[ϕ(ωi+1,i ) − ϕ(ω)]
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+ cr · ωiωi+1[ϕ(ωi↓) − ϕ(ω)] + cl · ωiωi+1[ϕ(ωi+1↓) − ϕ(ω)]
+ bl · (1 − ωi)ωi+1[ϕ(ωi↑) − ϕ(ω)] + br · ωi(1 − ωi+1)[ϕ(ωi+1↑) − ϕ(ω)]}.

(58)

We will abbreviate B = bl + br and C = cl + cr . Define, for � ∈ [0, 1], the one-site
marginal μ� by

μ�(1) = 1 − μ�(0) = �.

It is known (and will be apparent from our computations as well) that the Bernoulli product
distribution

⊗

i∈Z

μ�∗
with the specific density value �∗ = B

B + C
(59)

is a translation-invariant stationary distribution. Besides this, there is a trivial stationary
measure, which is the totally empty lattice with probability one:

⊗
i∈Z

μ0.

5.2 Shock Measure

In [18] the following shock measure was considered (adapted to infinite volume):
⊗

i≤j

μ�∗ ⊗

i>j

μ0. (60)

This measure is the �∗-stationary distribution on the left of j , and forces the empty configu-
ration on the right of j . It has been shown that this shock structure performs a biased simple
random walk when the algebraic relations (62) below hold for the rates.

This result is similar to that for the ASEP [8] and for the BLP [4]. An important difference
is however, that whereas in the ASEP and the BLP a good definition for the microscopic
position of the shock is the position of the second class particle, in the BCRW this is not
possible (the basic coupling does not conserve the number of second class particles). Here,
an obvious definition of the shock position is the position of the rightmost particle. Indeed,
using the result of [18], it can easily be shown that the stationary distribution seen from the
rightmost particle is a product measure with density �∗ on negative sites and density zero
on positive ones, which is a similar result to that of [12] and [3]. This naturally raises the
question whether the rightmost particle itself performs a simple random walk in the BCRW.

Following the previous strategy we define the shock measure

μ
j
=

⊗

i<j

μ�∗ ⊗

i=j

μ1
⊗

i>j

μ0,

which is similar to the previous shock measure except that at site j we force the presence of
a particle. This one is of course the rightmost particle in the system.

Theorem 3 The identity

d

dt
μ

j
S(t)

∣∣∣
t=0

= P · [μ
j+1

− μ
j
] + Q · [μ

j−1
− μ

j
] (61)

holds if

p = br · C

B
. (62)
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In this case

P = p · C + B

C
, and Q = q · C

C + B
+ cl · B

C + B
, (63)

which shows that the rightmost particle performs a simple random walk.

Notice that (62) does not depend on q , the jump rate of particles away from the zero-density
region. We remark that both the result in [18] and this theorem has a mirror-symmetric
version with the empty configuration on the left and density �∗ on the right, p, cr , and br

interchanged with q , cl , and bl , respectively.
Notice also that

j∑

k=−∞
(1 − �∗)j−k�∗ · μ

k

exactly equals (60) (just condition on where the rightmost particle is according to (60)). Due
to linearity of both sides of (61), our result implies the same equation for the measure (60),
thus the result of [18] is recovered.

5.3 Proof for BCRW

Proof of Theorem 3 Again we set j = 0. The idea is now familiar: first take a cylinder
function of values ωa . . .ωb with a < −1 < 1 < b and apply the expectation E0 w.r.t. μ

0
of

(58). Making use of ω0 = 1 and ωi = 0 for i > 0, this leads to

E0(Lϕ)(ω) = E0

{ −2∑

i=a−1

{
p · ωi(1 − ωi+1)[ϕ(ωi,i+1) − ϕ(ω)]

+ q · (1 − ωi)ωi+1[ϕ(ωi+1,i ) − ϕ(ω)]
+ cr · ωiωi+1[ϕ(ωi↓) − ϕ(ω)]
+ cl · ωiωi+1[ϕ(ωi+1↓) − ϕ(ω)]
+ bl · (1 − ωi)ωi+1[ϕ(ωi↑) − ϕ(ω)]
+ br · ωi(1 − ωi+1)[ϕ(ωi+1↑) − ϕ(ω)]}

+ q · (1 − ω−1)[ϕ(ω0,−1) − ϕ(ω)]
+ cr · ω−1[ϕ(ω−1↓) − ϕ(ω)]
+ cl · ω−1[ϕ(ω0↓) − ϕ(ω)]
+ bl · (1 − ω−1)[ϕ(ω−1↑) − ϕ(ω)]
+ p · [ϕ(ω0,1) − ϕ(ω)]

+ br · [ϕ(ω1↑) − ϕ(ω)]
}

.

Then change variables to restore ϕ(ω) in each term, and watch for singularity of Ej ’s for
different configurations. In fact ω0,1 and ω1↑ will be taken under E1, ω0,−1 and ω0↓ will be
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taken under E−1 after the change of variables. We arrive to

E0(Lϕ)(ω) = E0

{

ϕ(ω)

[ −2∑

i=a−1

Ai + A

]}

+ E−1

{
ϕ(ω) · D} + E1

{
ϕ(ω) · E}

, (64)

where

Ai = p · (1 − ωi)ωi+1 − p · ωi(1 − ωi+1) + q · ωi(1 − ωi+1) − q · (1 − ωi)ωi+1

+ cr · (1 − ωi)ωi+1 · μ�∗
(1)

μ�∗
(0)

− cr · ωiωi+1

+ cl · ωi(1 − ωi+1) · μ�∗
(1)

μ�∗
(0)

− cl · ωiωi+1

+ bl · ωiωi+1 · μ�∗
(0)

μ�∗
(1)

− bl · (1 − ωi)ωi+1

+ br · ωiωi+1 · μ�∗
(0)

μ�∗
(1)

− br · ωi(1 − ωi+1),

A = −q · (1 − ω−1) + cr · (1 − ω−1) · μ�∗
(1)

μ�∗
(0)

− cr · ω−1 − cl · ω−1

+ bl · ω−1
μ�∗

(0)

μ�∗
(1)

− bl · (1 − ω−1) − p − br ,

D = q · μ�∗
(0)

1
+ cl · μ�∗

(1)

1
,

E = p · (1 − ω0)
1

μ�∗
(0)

+ br · ω0
1

μ�∗
(1)

.

In the above we freely added or removed the a.s. one factors ωj and 1 − ωj+1 for terms
under Ej . The aim is again to show that D and E become independent of the variables and
equal to Q and P , respectively, while the A terms amount to −Q − P of (63). Plugging in
the specific form (59) of �∗ simplifies things to

Ai =
[
p − q + cr · B

C
− bl

]
· (ωi+1 − ωi),

A =
[
q − cr · B

C
− C + bl · C

B
+ bl

]
· ω−1 − q + cr · B

C
− bl − p − br,

D = q · C

B + C
+ cl · B

B + C
,

E =
[
−p − p · B

C
+ br + br · C

B

]
· ω0 + p + p · B

C
.

Since Ai is of gradient form, we can compute the sum in (64). We also use the fact that ϕ

does not depend on ωa−1, hence this latter has expectation �∗ = B/[B +C]. Then (64) reads

E0(Lϕ)(ω) = E0ϕ(ω)

{[
p − br · C

B

]
ω−1
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− p ·
[

B

B + C
+ 1

]
− q · C

B + C
+ brcr − blcl

B + C
− br

}

+ E−1ϕ(ω)

{
q · C

B + C
+ cl · B

B + C

}

+ E1ϕ(ω)

{[
−p − p · B

C
+ br + br · C

B

]
· ω0 + p + p · B

C

}
.

Substituting (62) cancels the ω-dependence and results in

E0(Lϕ)(ω) = E0ϕ(ω)

{
−q · C

B + C
− cl · B

B + C
− p · B + C

C

}

+ E−1ϕ(ω)

{
q · C

B + C
+ cl · B

B + C

}

+ E1ϕ(ω)

{
p · B + C

C

}
. �
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Appendix: Shock velocity for multiple shocks in the ASEP

Consider a multiple n-shock in the ASEP. We use a slightly modified notation: enumerate
the second class particles k = 1 . . . n in spatial order, and denote by �(k) the constant density
value from the position of the kth second class particle to the left neighbor of the site of the
k + 1st second class particle (to infinity for k = n). We also denote by �(0) the density value
on the left of the 1st second class particle. This notation simplifies the arguments to come,
and it is possible due to the specific fact that second class particles exclude each other and
keep their order in ASEP. Condition (35) then becomes

�(k)(1 − �(k−1))

�(k−1)(1 − �(k))
= p

q

in this notation, and jump rates (39), (40) turn into

P(k) = 1 − �(k)

1 − �(k−1)

· p = �(k)

�(k−1)

· q and Q(k) = 1 − �(k−1)

1 − �(k)

· q = �(k−1)

�(k)

· p (65)

for the kth second class particle.
First notice that the dynamics of a multiple n-shock, which has been shown to be an n-

particle simple exclusion dynamics with hopping rates P(k) (right) and Q(k) (left) for particle
k, can be mapped to an n − 1 site open zero range process (ZRP), see Fig. 2. The inter-
particle distances in the exclusion process are interpreted as occupation numbers of the cor-
responding open ZRP. In this ZRP the left and right hop rates from site k (k = 1,2, . . . , n−1)
are independent of the occupation number and are equal to Q(k+1) and P(k) respectively. The
rate of particle injection on the first and last (n − 1st) site of the system is Q(1) and P(n).

Due to the attraction of “micro-shocks” in the ASEP, this ZRP has a well-defined station-
ary measure, which has a product structure with site-dependent fugacities [20]. The mean
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Fig. 2 Mapping of a simple exclusion process (above) to ZRP (below) for n = 5

velocity of the shock in the ASEP maps to the stationary current in the ZRP. In [20] the
stationary current is calculated for open zero range processes with constant left and right
hopping rates in the bulk. Their formula ((15) in that paper) for the current J can easily be
generalized for inhomogeneous cases as

J =
∏n

k=1 P(k) − ∏n

k=1 Q(k)
∑n

k=1

∏k−1
�=1 P(�)

∏n

�=k+1 Q(�)

. (66)

Using (65) we write the denominator of (66) as

n∑

k=1

qk−1
k−1∏

�=1

�(�)

�(�−1)

· qn−k

n∏

�=k+1

1 − �(�−1)

1 − �(�)

= qn−1

�(0)(1 − �(n))

n∑

k=1

�(k−1)(1 − �(k)). (67)

Define now

A =
n∑

k=1

�(k−1)(1 − �(k)), B =
n∑

k=1

(1 − �(k−1))�(k),

for which we have

p · A = q · B and B − A = �(n) − �(0).

This can be solved to

A = �(n) − �(0)

p − q
· q

and hence (67) equals

�(n) − �(0)

�(0)(1 − �(n))
· qn

p − q
.

Inserting this into (66) one obtains

J =
�(n)

�(0)
· qn − 1−�(0)

1−�(n)
· qn

�(n)−�(0)

�(0)(1−�(n))
· qn

p−q

= (p − q) · �(n)(1 − �(n)) − �(0)(1 − �(0))

�(n) − �(0)

. (68)
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One can see that in the rhs. of (68) the usual Rankine-Hugoniot velocity is recovered as
expected.
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